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Lubrication theory is used to derive a coupled pair of strongly nonlinear partial
differential equations governing the evolution of interfaces separating a thin film of a
pure melt from its crystalline phase and from a gas. The free melt–gas (MG) interface
deforms in response to the local state of stress and the crystal–melt (CM) interface can
deform by freezing and melting only. A linear stability analysis of a static, uniform
film subject to the effects of MG interface capillary forces, thermocapillary forces,
the latent heat of fusion, van der Waals attraction, heat transfer and solidification
volume change effects, reveals stationary and oscillatory instabilities. The effect of a
temperature gradient (by increasing the gas phase temperature) is to stabilize a film.
As the temperature gradient is reduced, the onset of instability is oscillatory and is at
a unique, finite wavenumber. Instability is oscillatory for all marginally stable, non-
isothermal cases. Crystals with higher density than the melt are more stable, whereas
crystals with lower density are less stable in the presence of an applied temperature
gradient. Fully nonlinear numerical solutions show that oscillatory instabilities lead to
rupture by growth of standing or travelling waves. Rupture times and the number of
oscillations to rupture increase as the temperature gradient is increased. For stationary
linearly unstable initial conditions, the CM interface retreats by melting away from
the tip region of the encroaching MG interface due to a rise in the heat flux there as
the film thins and nears rupture. Larger amplitude disturbances increase the maximum
allowable temperature for instability, at a given wavenumber, and decrease the time
to rupture at fixed temperature and wavenumber.

1. Introduction
Understanding the stability and morphological evolution of thin liquid films is

vital for a variety of applications such as processing of foam networks (Ashby et al.
2000; Banhart 2001), pulsed laser micromachining (Ajaev & Willis 2006) and liquid
multilayers (Fisher & Golovin 2005). For example, in a foam, there are sections of
crowded gas bubbles separated by uniform, thin, liquid lamella. One possible method
for freezing a metallic foam is directional solidification by pulling it through a
controlled, unidirectional thermal gradient. The lamella between bubbles may be
oriented in any direction relative to the applied temperature gradient, including an
orientation perpendicular to the axial direction of a lamella. In laser applications, heat
sources are applied atop crystalline materials, resulting in very thin liquid films which
may then resolidify. In this study, we examine the dynamics of a very thin liquid film,
such as a partially frozen lamella, with a temperature gradient oriented perpendicular
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Figure 1. A two-dimensional thin melt film is bounded by melt–gas (h(x, t)) and crystal–melt
(h(x, t)) interfaces. Dashed lines h0 and h0 represent a uniformly thick melt layer which is used
as a base state in a linear stability analysis. The crystal is a layer with a temperature gradient
applied at z = hC .

to the axial direction of the film. This corresponds to those cases described above;
however, the results of this study are relevant for any thin metallic film in contact
with its non-premelting (usually close-packed) crystalline interface.

The chosen configuration allows for careful benchmarking of the results with
previous studies of the rupture of liquid films atop non-deformable, inert substrates.
The comparisons are necessary in order to understand how a thermal gradient coupled
with an additional crystal–melt interface, deformable by melting or freezing, affects
rupture dynamics. For the results presented in this work, the properties of aluminium
are used, since these are well studied, and it has potential use in many applications
(Banhart 2001).

The general three-phase solidification geometry applicable in the examples discussed
above is shown in figure 1. The system consists of a solid layer, a thin liquid film (the
melt of the crystal) and an inert gas phase. The unique aspect of this configuration is
the presence of a crystal-melt interface which can deform, potentially leading to a rich
array of patterns. The thin film configuration leads to fluid dynamics controlled by
melt–gas (MG) interfacial phenomena, solidification phenomena and viscous effects.
Intermolecular forces also become significant for films that are sufficiently thin, as in
the examples listed above. In comparison to bulk multiphase systems, the combination
of thinness of the geometry and the additional forces leads to unique dynamics.

It has been well established that in a thin, pure, liquid layer on a solid substrate, fluid
flow depends heavily on viscous forces and surface tension. Based on experimental
observations, Sheludko (1967) proposed that long-range intermolecular forces, due to
London dispersion or van der Waals attraction, give rise to instability of ultra-thin
(100−1000 Å) liquid layers, ultimately leading to rupture. Ruckenstein & Jain (1974)
accounted for this dispersion force by incorporating it into the pressure term of the
Navier–Stokes equations that govern fluid flow in the film. They showed that there
exists a critical surface perturbation wavelength λC that is much larger than the film
thickness, below (above) which the film is stable (unstable). They predicted a time to
rupture tR based on the linear growth rate of a perturbation of critical wavelength.

Williams & Davis (1982) derived a strongly nonlinear evolution equation for the
interface shape of a thin film on a substrate in the lubrication limit. They formalized
the critical wavelength result from Ruckenstein & Jain, and developed a long-wave
theory of the thin film in which the fluid flow equations and boundary conditions
are written as a regular perturbation series in terms of the ratio of the film thickness
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to a characteristic lateral length scale in the film. Numerical solutions of the fully
nonlinear governing equation for the shape showed that the nonlinear effects speed
up the time to rupture compared to the estimate given by the linear theory.

VanHook et al. (1995) identified a long-wave instability for the case of surface-
tension-driven Bénard convection on a substrate. Below a critical thickness, the
primary instability is long-wave, which leads to dewetting over large regions of the
substrate. Above the critical thickness, hexagonal convection cells are the primary
instability. The experimental results were compared to long-wave theory and linear
analysis, and were generalized for microgravity environments.

Burelbach, Bankoff & Davis (1988) utilized long-wave theory to derive evolution
equations for interface shapes under isothermal and non-isothermal conditions,
allowing for evaporation and condensation at the liquid–gas interface. They also
investigated the apparent singularity of the gas–liquid interface near a protuberance
tip as it nears rupture, and have derived similarity solutions for the tip region at times
very close to tR . Near rupture, similarity solutions for a gas–liquid interface bounding
a thin liquid film on a solid substrate are also derived by Zhang & Lister (1999). They
conclude that there is a countably infinite set of similarity solutions in which the film
thickness decreases as (tR − t)1/5 where (tR − t) is the time remaining until rupture.

Erneaux & Davis (1992) considered the case of a free liquid film bounded by two
liquid–gas interfaces under isothermal conditions. Long-wave asymptotic theory is
applied and a pair of coupled nonlinear equations governing the evolution of the two
bounding surfaces is derived. They obtain an estimate for the rupture time based on
the nonlinear theory. An excellent review on the dynamics of thin films is provided
by Oron, Davis & Bankoff (1997), for a very wide range of conditions.

Bandyopadhyay, Gulabani & Sharma (2005) investigated interfacial instability of
thin bilayers of immiscible fluids on a solid substrate. They applied lubrication theory
to determine linear growth rates as a function of viscosity and layer thickness for
several material systems that are of relevance to integrated circuit technology. They
also numerically simulate the nonlinear morphological evolution. Fisher & Golovin
(2005) recently derived a system of strongly nonlinear evolution equations governing
the dynamics of a two-layer liquid system on a solid substrate including surfactants
at liquid–liquid interfaces. Analysis showed the appearance of oscillatory instability
leading to standing or travelling waves.

Often thin melt films will appear between a crystal and a vapour near, but below,
the bulk melting point of the material. This phenomenon is known as premelting
of free surface layers. Premelting has significant macroscopic consequences, and
contributes to environmental effects such as frost heave and glacier flow (Dash, Fu &
Wettlaufer 1995). Dash et al. have shown how the premelted film thickness depends
on the reduced temperature (Tm −T )/Tm (where T < Tm), the molecular potential and
surface energy. Wettlaufer et al. (1996) and Wettlaufer, Worster & Wilen (1997) have
investigated many cases of flows in premelted thin films, and have considered a large
variety of physical effects that drive the interfacial evolution and melting/freezing of
the CM interface in these systems. (See the recent article by Wettlaufer & Worster
(2006) and references therein.)

The causes of the premelting of surfaces and the forces leading to rupture of thin
liquid films are related to the intermolecular potentials arising within the surface
layers separating the phases, such as the long-range van der Waals forces. The
intermolecular potentials giving rise to these forces vary with interface geometry
and material dielectric function (Israelachvili 1991) and one result is that they give
rise to a difference in pressure in a thin film compared with its bulk state, referred
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to as the disjoining pressure. Positive disjoining pressure can lead to spontaneous
thickening of a film, a negative disjoining pressure can lead to thinning and instability
of a thin liquid layer. Theoretical estimates of the material-dependent Hamaker
constant, a measure of the strength of the disjoining pressure, have been found for
a variety of solid phases bounding thin films of water (Wilen et al. 1995). Molecular
dynamic studies (Tartaglino et al. 2005) and ion shadowing and blocking experiments
(Pluis et al. 1987; Frenken & van der Veen 1985) of melting and non-melting on solid
surfaces suggest that many metal crystal facets, such as Pb(110) (Pluis et al. 1989)
exhibit surface melting. However, close-packed crystal facets, such as Al(111) and
Pb(111) (Pluis et al. 1987) are non-melting and can even survive surface overheating.
Whether or not a surface has a stabilizing or destabilizing dispersion force depends
on the sign of the Hamaker constant (Dash et al. 1995; Tartaglino et al. 2005). In
this analysis, premelted films are not considered.

In the present paper, we use lubrication theory to derive appropriate governing
equations for a thin film subject to a non-uniform temperature and in which both
the melt–gas and the crystal−melt interfaces bounding the film are deformable. The
model is used to study the instability and evolution to a point near rupture of the thin
film. In the following sections, the governing equations for the three-phase system are
presented (shown in figure 1). These are then rescaled and a pair of coupled evolution
equations are derived. A linear stability analysis of a uniform film reveals the effect of
the thermal field and solidification phenomenon on stability. Numerical results reveal
a rich variety of nonlinear behaviours, leading to rupture.

2. Governing equations
In two dimensions, the Navier–Stokes and continuity equations govern the

components of the fluid velocity u(x, z, t), w(x, z, t) and pressure p(x, z, t):

ρl(ut + uux + wuz) = −p∗
x + µ(uxx + uzz), (2.1)

ρl(wt + uwx + wwz) = −p∗
z + µ(wxx + wzz), (2.2)

and

ux + wz = 0, (2.3)

where subscripts x and z denote partial derivatives, ρl is the melt density and µ is
the melt viscosity. The effective pressure p∗ = p + φ is defined where long-range van
der Waals molecular interactions are included in φ (gravity is negligible). Disjoining
pressures in thin films arise due to various molecular interactions including van
der Waals, electrostatic and structural forces (Chernov & Temkin 1976), which may
be attractive and/or repulsive, short-range and/or long-range. (Some examples are
discussed in Oron et al. 1997.) As a film approaches rupture, repulsive forces can play
an increasing role (Kao, Golovin & Davis 2006). However, in this study we are only
concerned with the long-range attractive van der Waals forces, since these drive the
instability of a film, and so we neglect the repulsive forces. As a result, we employ
the form φ = (A′/6π)(h − h)−3 to represent the intermolecular interactions, where A′

is the Hamaker constant. This form is valid for parallel or quasi-parallel interfaces
(Davis 2000), and is the same used in many previous studies including Williams &
Davis (1982).

Recently, Wu & Wong (2004) have derived a disjoining pressure that depends on
the slope and the curvature of a film which makes a contact angle/line at the surface
of a solid substrate. This form of the disjoining pressure, among other effects, keeps
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a contact line from moving without slip. However, the effects of a slope-dependent
disjoining pressure would appear at higher order in a linear analysis of a uniform film
(given in the following section). In addition, this study involves film evolution up to
the point of rupture, prior to contact line formation. Therefore, the slope-dependent
disjoining pressure is not included in this study.

In a non-isothermal system the melt temperature T l is governed by

ρlcl
(
T l

t + uT l
x + wT l

z

)
= kl

(
T l

xx + T l
zz

)
, (2.4)

and the crystal temperature T s obeys

ρscs
(
T s

t + uT s
x + wT s

z

)
= ks

(
T s

xx + T s
zz

)
, (2.5)

where cl (cs) is the heat capacity of the melt (crystal), kl (ks) is the thermal conductivity
of the melt (crystal) and ρs is the density of the crystal.

At the MG interface z = h(x, t), the kinematic condition is

w = ht + uhx, (2.6)

where the components of the fluid velocity are evaluated at the interface; i.e.
u = u(h(x, t), x, t) and w =w(h(x, t), x, t). The condition on the normal component
of stress at the interface is

−p∗ + φ + pg +
2µ(

1 + h2
x

)[(
uxh

2
x + wz

)
− hx(uz + wx)

]
= γ MG hxx(

1 + h2
x

)3/2
, (2.7)

where pg is the hydrostatic pressure in the inviscid gas phase. The right-hand side of
(2.7) is the product of the MG surface energy γ MG and the curvature of the interface.

The tangential component of the shear stress at the interface is balanced by the
thermo-capillary force per unit area:

−2µ(ux − wz)hx + µ(uz + wx)
(
1 − h2

x

)
= γ MG

x (1 + h2
x)

1/2. (2.8)

The right-hand side represents thermocapillary or thermal Marangoni effects,
operative when the surface tension depends on temperature (e.g. Wheeler 1993),

γ MG(T l) = γ MG
0 − γ MG

T (T l − T0), (2.9)

where γ MG
T is the rate of change of the surface energy γ MG with respect to temperature

and is given as a material property; γ MG
0 is a reference value of surface energy

evaluated at T0.
The heat flux into the melt layer at the MG interface is balanced by ‘convective’

heat transfer from the gas

−kl(∇T l · n̂) = αT h(T
l − T∞), (2.10)

where αT h is an empirical heat transfer coefficient and n̂=(− hx î + k̂)(1 + h2
x)

−1/2 is the
unit vector normal to the MG interface pointing into the gas phase. T∞ is a prescribed
ambient gas temperature and is a control parameter. In addition, the temperature is
continuous at all interfaces.

The CM interface, z = h(x, t), has unit normal vector n̂ = (− hx î + k̂)(1 + h
2

x)
−1/2

pointing into the melt, a unit tangent vector t̂ = (î + hx k̂)(1 + h
2

x)
−1/2 and a local

normal growth speed v̂n =ht (1 + h
2

x)
−1/2. At the CM interface, there is the no-slip

condition u · t̂ = 0, where u = (u, w) is the fluid velocity.
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The equilibrium crystal–melt interface temperature is given by the Gibbs–Thomson
condition

T l
I = TM −

TM

(
γ CM + γ CM

φφ

)
Lv

K, (2.11)

where TM is the melting point of the pure bulk crystal (planar interface), Lv is the
latent heat of fusion per unit volume of crystal phase, γ CM is the CM interfacial
energy, and the subscripts φ denote differentiation with respect to the angle the
normal vector makes with the interface. For isotropic crystals γ CM

φφ is zero. Here, the
CM curvature K is positive for a crystal sphere.

Evolution of the CM interface results in solidification shrinkage/expansion so that:

ρl − ρs

ρl
vn = u · n̂. (2.12)

Equation (2.8) indicates that solidification shrinkage promotes normal flow towards
the CM interface (e.g. Al), whereas solidification expansion promotes flow away from
the interface (e.g. ice). Finally, at the CM interface, the difference in the heat fluxes
is balanced by the rate of latent heat evolved per unit time and per unit area of
interface during growth:

Lvvn = −kl∇T l · n̂ + ks∇T s · n̂. (2.13)

In this work, the crystal may be assumed to be a layer of thickness hC . At z = − hC

the z-component of the applied temperature gradient is held constant, ∇T · k̂ =G
app
L ,

where G
app
L is the applied temperature gradient (from a furnace or another source).

Both G
app
L and the ambient temperature of the gas phase T∞ away from the MG

interface are experimentally controllable parameters.

3. Equations of evolution
Let ε ≡ h0/L0 � 1, where h0 and L0 are the characteristic film thickness and length,

respectively, and rescale variables in the following manner appropriate for a thin film:
z = Zho, x = XLo, t = τL0/U0, hC = HCh0, h = Hh0, h = Hh0, u =UU0, w = WεU0,
p∗ = PµU0/(ε

2L0) and φ = ΦµU0/(ε
2L0). Here, U0 = ν/L0 is chosen as a characteristic

flow velocity for a fluid with kinematic viscosity ν. The temperature in the bulk melt
is non-dimensionalized by T l = Θl
+ TM and bulk crystal by T s =Θs
+ TM , where

 is a reference temperature or temperature difference. The dimensionless capillary
number, dimensionless latent heat parameter, and dimensionless Marangoni number
are defined as C

−1 ≡ ε3γ MG
0 /(µU0),

ˆ̂
L ≡ εLvh0U0/(k

l
) and MT ≡ ε−2γ CM
T 
/γ MG

0 ,
respectively. A list of symbols, and their values for pure aluminium, is given in
table 1.

All dependent variables except for the interface shapes are expressed as regular
perturbation series in terms of the small parameter ε2, and are substituted into the
governing equations. At leading order, the following system applies in the bulk melt:

P ∗
X = UZZ, (3.1)

P ∗
Z = 0, (3.2)

Θl
ZZ = 0, (3.3)

and

UX + WZ = 0. (3.4)
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Symbol Description Definition Value

ε thin film scaling parameter
h0

L0

0.001

ˆ̂
L latent heat of fusion

εLvh0U0


kl
5.69 × 10−9

βT ratio of conductivities
ks

kl
2.2

GS temperature gradient in solid
G

app
L h0



free parameter

Bi Biot number
αT hh0

kl
5.3 × 10−7

Θ∞ far-field temperature in gas
T∞ − TM



varies

mL liquidus slope
mC0



− 5.6 × 10−4

E ratio of densities
ρs

ρl
1.07

C
−1

capillary number ε3 γ MG
0

µU0

1.68 × 10−5

Γ crystal–melt surface parameter ε2 γ CMTM

Lvh0

9.21 × 10−9

MT Marangoni due to temperature gradient ε
C

−1
γ MG

T 


γ MG
0

1.55 × 10−4

Ã dimensionless Hamaker constant
A′

6πh0ρlν2
8.8 ×10 −6

Re Reynolds number
U0L0

ν
1

Table 1. List of non-dimensional variables with values for pure aluminium.

At the MG interface (Z = H ),

−P ∗ + PG + Φ = C
−1

HXX, (3.5)

where
Φ =

Ã

(H − H )3
, (3.6)

and Ã= A′/(6πh0ρ
lν2) is a non-dimensional Hamaker constant. Furthermore,

UZ = −εMT C−1
(
Θl

X + HXΘl
Z

)
, (3.7)

W = Hτ + UHX, (3.8)

and
Θl

Z = −Bi(Θl − Θ∞). (3.9)

Θ∞ = (T∞ − Tm)/
 is the scaled ambient gas temperature and Bi = αT hh0/kl is the
Biot number for heat transfer through the MG interface.

At the CM interface (Z = H ) the non-dimensional boundary conditions are

ΘI = ε2Γ HXX, (3.10)

W = (1 − E)Hτ + UHX, (3.11)

and

U = 0. (3.12)
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The dimensionless CM surface tension is Γ = γ CMTM/(Lvh0
) and E = ρs/ρl is the
ratio of the crystal to melt densities.

It is noted that the CM surface tension could be retained at this order also.
However, from estimates of the magnitude of this effect, it is anticipated that the
influence of the CM surface tension would not be important in the parameter ranges
of interest in this study, i.e. for disturbances near the maximum growth rate as given
by a linear stability analysis. For this reason, we neglect the effect of the CM surface
tension.

The balance of heat at the crystal–melt interface requires knowledge of the
temperature in the crystal. Suppose we assume the crystal layer to be very thin
(having a thickness hc ∼ ho); then the temperature is governed by Θs

ZZ = 0, which,
when combined with the component of the applied temperature gradient at the lower
crystal surface, gives a field linear in Z. It follows then that the final CM interfacial
condition becomes

ˆ̂
LHτ = βT GS − Θl

Z, (3.13)

where βT is the ratio of the crystal to melt thermal conductivity and GS = G
app
L (h0/
)

is the dimensionless applied temperature gradient in the crystal. The effect of the
thermal field in the crystal is only through the parameter GS . Finally, initial conditions
and lateral boundary conditions for all variables are prescribed. 
 is also chosen to
be the bulk melting temperature TM .

Evolution equations for Hτ (τ, X) and Hτ (τ, X) are derived as follows. According
to (3.2), the pressure is independent of Z, therefore (3.1) is integrated and, with the
conditions (3.7) and (3.12), gives

U (τ, X, Z) =
1

2
P ∗

X(Z2 − H
2
) −

[
P ∗

XH + C
−1

MT

(
Θl

X + HXΘl
Z

)]
(Z − H ). (3.14)

Integration of (3.4) gives W (τ, X, Z). Equation (3.3) is also integrated and, after
applying the boundary conditions (3.9) and (3.10), gives

Θl =
Bi(Θ∞)

1 + Bi(H − H )
(Z − H ). (3.15)

Evolution equations for Hτ (τ, X) and Hτ (τ, X) follow by combining (3.5), the
kinematic equations (3.8) and (3.11), and the heat conservation law (3.13) with (3.14).
The result is

Hτ =
1

ˆ̂
L

(
βT GS − BiΘ∞

1 + Bi(H − H )

)
(3.16)

and

Hτ − (1 − E)Hτ =

[
− Ã(H − H )X

(H − H )
− C

−1

3
(H − H )3H3X

+C
−1

[
MT BiΘ∞[H − H ]

2(1 + Bi[H − H ])

]
X

(H − H )2

]
X

. (3.17)

In order to allow for comparison with previous analysis, such as the case of an
isothermal film on a substrate, spatial and temporal coordinates are rescaled in

terms of the capillary and Hamaker parameters according to X̂ =

√
(3Ã/C

−1
)X and



Oscillatory instability and rupture in a thin melt film 431

τ̂ = (3Ã2/C
−1

)τ , to give

Hτ̂ = Q − RBi

1 + Bi(H − H )
(3.18)

Hτ̂ − (1 − E)Hτ̂ =

[(
M

Bi(H − H )2

1 + Bi[H − H ]2
− 1

[H − H ]

)
[H − H ]X̂ − (H − H )3H3X̂

]
X̂

.

(3.19)

A new solidification parameter,

R =
C

−1
Θ∞

3Ã2

1

ˆ̂
L

, (3.20)

the modified Marangoni number,

M =
C

−1
MT Θ∞

2Ã
, (3.21)

and the heat flux through the crystal,

Q =
βT GSC

−1

3Ã2 ˆ̂
L

, (3.22)

are identified. The parameters appearing in (3.18) and (3.19) are R, Q, Bi, E and
M . The nonlinear system of evolution equations (3.18) and (3.19) govern long-wave
interface dynamics subject to an applied body force potential, capillary, thermo-
capillary, heat flow and solidification effects.

Note that for Θ∞ = 0 then R = M =0. Furthermore, if E = 1 and H =0 then this
isothermal system reduces to the case of a thin film on a substrate studied by
Williams & Davis (1982), which serves as a benchmark, from which it is possible to
ascertain the importance of the thermal/solidification effects.

4. Linear stability analysis
Linear stability of the system of equations (3.18) and (3.19) is studied by considering

perturbations of the interface shape functions H and H from a uniformly thin base
state:

H (τ̂ , X̂) = H (τ̂ )0 + H (τ̂ , X̂)1,

H (τ̂ , X̂) = H (τ̂ )0 + H (τ̂ , X̂)1,

}
(4.1)

where superscripts 0 and 1 refer to the base and the perturbed states, respectively.
These functions are substituted into (3.18) and (3.19) to give

H
0

τ̂ = Q − RBi

(1 + Bi(H 0 − H
0
))

(4.2)

and

H 0
τ̂ − (1 − E)H

0

τ̂ = 0. (4.3)
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governing the base state. A time-independent base state is investigated (i.e. H
0

τ̂ =0,

H 0
τ̂ = 0, H

0
= 0 and H 0 = 1). Since Θ∞ � 0 then the heat flux through the melt layer,

Q =
RBi

(1 + Bi)
, (4.4)

is fixed by (4.2).
The linearized perturbation equations are given by

H
1

τ̂ =
RBi2

(1 + Bi)2
(H 1 − H

1
) (4.5)

and

H 1
τ̂ − (1 − E) H

1

τ̂ =

(
M

Bi[H 0 − H
0
]2

(1 + Bi[H 0 − H
0
]2)

− 1

[H 0 − H
0
]

)
(H 1 − H

1
)2X̂

− [H 0 − H
0
]3H 1

4X̂
. (4.6)

Substituting normal modes for the perturbation shapes,

H 1 = ρ exp(σ τ̂ ) exp (iωX̂) (4.7)

and

H
1
= ρ exp(σ τ̂ ) exp(iω(X̂ − X̂0)), (4.8)

where σ is the growth rate, ω is a wavenumber and X̂0 allows for a translation of the
CM interface relative to the MG interface, leads to the dispersion relation

σ 2 +

[
ω4 +

MBi − (1 + Bi)2

(1 + Bi)2
ω2 +

Bi2RE

(1 + Bi)2

]
σ +

RBi2

(1 + Bi)2
ω4 = 0. (4.9)

The marginal stability condition, obtained by setting the real component of σ

equal to zero in the dispersion relationship, is given by the heavy black curve in

figure 2(a) on a diagram of the thermal parameter B = C
−1

Bi2Θ∞/(3
ˆ̂
LÃ2(1 + Bi)2)

versus ω. The values of all coefficients in (4.9) are calculated from the data for Al
given in table 2. Within the marginal curve the film is unstable, outside the curve it
is stable. The isothermal flat-CM interface occurs at B = 0 and exhibits a range of
unstable wavenumbers. As B increases from 0, the range of unstable perturbation
wavenumbers shrinks culminating in a maximum value of BC = 0.234 along the
marginal stability surface.

The solid to liquid density ratio E allows for volume shrinkage (E > 1) or expansion
(E < 1) as a system solidifies. Figure 2(b) shows the influence of variation in E on the
marginal stability condition. The value of E for Al is 1.07. Values of E below unity
correspond to systems such as water/ice. Notice that the region of instability, below
the heavy curve, expands as the density ratio decreases, hence the system becomes
less stable. For E greater than unity, hotter fluid flows to the tips of the perturbations
on the CM interface and fluid is rejected at the depressions. For E less than unity,
the fluid is rejected at tips and additional hot fluid flows to the depressions. These
effects are consistent with the results shown in figure 2(b).

From this point on, it is assumed that E = 1 and M =0, since Marangoni effects
and the density differences modify the results but are not the primary focus of the
study. The dispersion relation now depends on the single control parameter B . It also
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Figure 2. (a) Stability plot as a function of the thermal parameter B . The heavy black
curve is the marginal stability limit. Perturbation conditions below this curve are unstable,
and conditions above are stable. Onset of instability occurs at a critical thermal parameter
BC = 0.234. The white regions represent stationary initial conditions, while the grey-scale
contours represent iso-frequency oscillatory states. Region I is therefore stationary and stable.
Region II is stationary but unstable, region III is oscillatory and unstable, and region IV is
oscillatory and stable. (b) Marginal stability limits for a few values of E, the ratio of solid to
liquid densities, plotted as a function of B .

Symbol Description Al Units

h0 film thickness 10−8 m
L0 film length 10−5 m
Lv latent heat of fusion 1.01 × 109 J m−3

U0 characteristic fluid velocity (ν/L0) 0.05 m s−1


 set equal to Tm 934 K
Tm melting temperature 934 K
T∞ far-field temperature in gas varies K
kl thermal conductivity of liquid 95 W m−1 K−1

ks thermal conductivity of solid 210 Wm−1 K−1

cl specific heat capacity of liquid 2.58 × 106 Jm−3 K−1

G
app
L applied temperature gradient in solid varies Km−1

αT h convective heat transfer coefficient 10 − 104 Wm−2 K−1

ρs density of solid 2.55 × 103 Kgm−3

ρl density of liquid 2.39 × 103 Kgm−3

γ MG
0 MG surface tension (at 954 K)* 1.007 N m−1

γ CM CM surface tension 0.093 N m−1

µ viscosity (νρl)† 1.2 × 10−3 N sm−2

ν kinematic viscosity 5.02 × 10−7 m2 s−1

A′ Hamaker constant 10−19 − 10−21 J

* From Anson, Drew & Gruzleski (1999) and Hur, Park & Hiroshi (1989).† From Dinsdale and
Quested (1999).

Table 2. List of dimensional parameters for pure aluminium.

follows that, for σ = σr + iσi , then from (4.9)

σ 2
r − σ 2

i + σr (B − ω2 + ω4) + Bω4 = 0,

σi[2σr + (B − ω2 + ω4)] = 0.

}
(4.10)
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Figure 3. Real and imaginary parts of the growth rate σ for a value of the thermal parameter
B =0.0246. A perturbation of maximum growth rate is stationary, although perturbations
having marginally stable wavenumbers are oscillatory.
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Figure 4. Real and imaginary parts of the growth rate σ for a value of the thermal parameter
B =0.062. Here a perturbation of maximum growth rate is unstable to oscillatory modes, as
are perturbations having marginally stable wavenumbers.

In the fully nonlinear system the phase shift Xo has a significant effect on the evolving
interfaces. Again, for the isothermal case B = 0, there is one non-vanishing mode,
identical to that obtained by Williams & Davis (1982), i.e. σ = ω2(1 − ω2).

Two representative examples of the dispersion relation are plotted in figure 3 and
figure 4 for the cases of B = 0.0246 and B =0.062, respectively. Perturbations having
wavenumber of maximum growth rate are stationary in the case B = 0.0246 as σ is
real. However, marginally stable perturbations are oscillatory. In the second case, the
perturbation having maximum growth rate is also oscillatory.

The ratio of the linear perturbation amplitudes of the crystal–melt and melt–gas
surfaces [ρ, ρ] is fixed by the solution of the appropriate generalized eigenvalue
problem resulting from the linearization of the evolution equations. The ratio of the
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Figure 5. Stability plot as a function of the thermal parameter B for E = 1 and M = 0. The
heavy black curve is the stability limit. The white regions represent non-oscillatory states, while
the grey-scale contours represent iso-frequency oscillatory states as in figure 2.

amplitudes is
ρ

ρ
=

B

(σ + B)
exp (iωX̂0). (4.11)

Utilizing (4.11) in the expressions for the linearized shape growth rates gives:

dH 1

dτ̂
=

⎡
⎢⎢⎣ ω2(

1 +
B

σ

) − ω4

⎤
⎥⎥⎦ H 1,

dH
1

dτ̂
= σH

1
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.12)

The marginal stability diagram for the case of E = 1, M = 0 is given in figure 5,
which is similar to figure 2, except that the marginal stability surface has shifted up
slightly, and the maximum increases from B = 0.234 to B = 0.250.

Oscillatory behaviour occurs when the discriminant of the solution of the dispersion
relation in (4.9) becomes negative. The critical values of the thermal parameter B(ω)
separating regions of stationary and oscillatory instabilities are B

±
C = ω2 + ω4 ± 2ω3.

These critical lines are shown in figure 5 as the lines separating the white from the
shaded regions in the plot. Only the root B−

C within the unstable region is relevant
since these oscillatory solutions grow. For the case in which B < B−

C = ω2 +ω4 − 2ω3,
then there are no oscillatory solutions (σi =0) and thus

σr = − 1
2
(B − ω2 + ω4) ± 1

2
{(B − ω2 + ω4)2 − 4Bω4}1/2. (4.13)

If B >B−
C then

σr = − 1
2
(B − ω2 + ω4),

σi = ±
[
− 1

4
(B − ω2 + ω4)2 + Bω4

]1/2
.

}
(4.14)

Of particular interest is the observation that, in the case that B is finite and for σr = 0,
σi only vanishes if ω vanishes. All non-isothermal marginally stable states (σr = 0)
are oscillatory: thus, one expects either travelling or standing wave disturbances. In
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the case σr = 0, then σi =
√

Bw2, meaning that the oscillation frequency is larger for
larger B on the marginal curve. The maximum of the marginal stability curve occurs
where σr = dσr/dω = 0, at which point B = 0.25 and ω =

√
2/2. Thus increasing B

stabilizes the film, as the effect of the thermal field overrides the destabilizing effect
of the van der Waals interactions.

5. Physical mechanisms
Comparing to the isothermal case, the capillary and the van der Waals forces

couple with the solidification effects to produce oscillatory instability. The fact that
the crystal–melt interface is deformable impacts the relative importance of the thermal,
capillary and van der Waals effects.

The linearized growth rates of the interface shapes can be given in terms of the
eigenfunctions in (X̂, τ̂ ) variables:

dH (1)

dτ̂
= W (1),

dH
(1)

dτ̂
= − 1

ˆ̂
L

Θ
l(1)
Z ,

⎫⎪⎪⎬
⎪⎪⎭ (5.1)

where the function W (1) is evaluated at the unperturbed MG interface and Θ
l(1)
Z

is evaluated at the unperturbed CM interface. So, the upper interface perturbation
growth rate depends explicitly on the vertical component of the fluid velocity (through
the kinematic condition) and the CM interface growth rate is proportional to the
derivative of the temperature with respect to Z in the melt at the interface. However,
both eigenfunctions depend on both of the perturbed interface shapes unless the
system is isothermal, illustrating that growth rates are coupled through the thermal
field. The eigenfunctions are written as

U (1){X̂, Z, τ̂} = iω
[
−3Ã

(
H (1){X̂, τ̂} − H

(1){X̂, τ̂}
)

− C
−1

(iω)2H (1){X̂, τ̂}
](Z2

2
− Z

)
, (5.2)

W (1){X̂, Z, τ̂} = ω2
[
−3Ã

(
H (1){X̂, τ̂} − H

(1){X̂, τ̂}
)

+ C
−1

ω2H (1){X̂, τ̂}
](Z3

6
− Z2

2

)
, (5.3)

Θl(1){X̂, Z, τ̂} = −
[

Bi2Θ∞

(1 + Bi)2

](
H (1){X̂, τ̂} − H

(1){X̂, τ̂}
)
Z

−
[

BiΘ∞

(1 + Bi)

]
H

(1){X̂, τ̂}, (5.4)

and

P (1){X̂, τ̂} = −3Ã
(
H (1){X̂, τ̂} − H

(1){X̂, τ̂}
)

+ C
−1

ω2H (1){X̂, τ̂}. (5.5)

The eigenfunctions (5.2)–(5.5) can be used to reveal the effects of the thermal field
and the basic mechanisms for instability and stabilization of the layer.

Consider a perturbation of fixed, unstable wavenumber in an isothermal system.
Instability arises for those ranges of wavelengths in which the destabilizing van der
Waals forces (proportional to the square of the wavenumber) are stronger than the
stabilizing capillary forces (proportional to the fourth power of the wavenumber).
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Along the perturbed interface, the van der Waals forces will be stronger at the
narrowest regions of the film, and the capillary forces will be strongest at regions of
high curvature. Now let the far-field temperature be increased, thereby introducing a
positive temperature gradient in the direction pointing from crystal to the gas phase
in the transverse direction of the film. For small enough gradients, below B−

C in region
II in figure 5, the instability is stationary. Because the film is thin, and the Prandtl
number is vanishingly small, heat flow is quasi-static. Therefore heat enters at the
MG interface and is immediately transported to the CM interface, at which point
it may be absorbed by the crystal as latent heat. At the narrowest region there will
be more heat transferred than at the wider regions, providing more of a tendency
of the CM interface to decrease its growth rate or even melt locally. This then is
a thermal mechanism of film stabilization which directly opposes the destabilizing
influence of the van der Waals forces. (This picture is validated in the next section in
figure 18.)

If the far-field temperature is increased yet further at fixed, unstable wavenumber
so that B > B−

C but σr > 0, then the amount of heat arriving at the CM interface is
increased to such a degree that at the narrowest region of the perturbed film the CM
interface will now ‘outrun’ the MG interface, resulting in an expansion of the initially
narrowest region. The increase in separation reduces the magnitude of the van der
Waals forces locally at this region. Meanwhile, due to fluid conservation and an
increase in capillary forces in the descending portion of the MG interface regions, the
adjacent initially wider regions of the thin layer begin to narrow, bringing the van der
Waals forces increasingly into play, which continues to draw the interfaces closer in
the now narrowing regions. However, once again, as the regions become thinner, the
fast transport of heat to the narrowing region of the CM interface causes deceleration
of the thinning of this portion of the film since there is sufficient latent heat to
promote melting. Thus, for B >B−

c in the oscillatory unstable region of the marginal
stability area, the temperature gradient is large enough that the melting process can
locally ‘outrun’ the MG interface, which is descending due to van der Waals forces
at the narrowest regions, but only for a limited time. The cycle then reverses itself so
that the region of the interface which was just previously narrowing expands, and the
region which was previously expanding begins to narrow. The numerical calculations
show that, after a number of cycles, the van der Waals forces win out, resulting in
rupture. If the configuration of the MG and CM interfaces has symmetry then, the
result is the growth of a standing wave; if not symmetric, then it is the growth of a
travelling wave. Finally, if the ambient gas temperature is large enough, then the van
der Waals forces cannot overcome the large amount of heat that is being transported
to the CM interface, and the thin film is rendered stable.

In the oscillatory range, the relationship between the perturbed surface shapes is
complicated and, in general, the shapes are out of phase. Figure 6 is a plot of the
eigenfunctions for one of the pair of unstable complex conjugate eigenvalues, which
shows that, for both the CM and MG interface, the interface velocity is out of phase
with the perturbed surface shape for B = 0.062 and ω = 0.707.

Plots of one of the eigenfunctions for the temperature, pressure and vertical fluid
velocity component fields, evaluated at the MG interface, are given in figure 7, for the
cases in which B <B−

C (σi = 0) and B >B−
C (σi > 0). The figure illustrates the phase

difference that arises between the shape and the eigenfunctions as σ becomes complex
and gives rise to oscillatory behaviour. The imaginary part of σi produces a phase
shift between the CM and the MG interface and between shape and temperature
eigenfunctions as shown in the figures, leading to a travelling disturbance. Numerical
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Figure 6. Surface shape (solid) and velocity (dashed) eigenfunctions for B >B−
C in the
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grey) and pressure (dashed grey) normalized eigenfunctions at the MG interface. (a) is for
B < B−

C in the stationary regime and (b) is for B > B−
C in the oscillatory regime.

analysis in the next section will shed further light on the coupling beyond the initial
instability.

6. Numerical method
In this section, the governing pair of equations are discretized and numerically

integrated to find the evolution of the interface shapes and to predict rupture times.
Equation (3.19) of the nonlinear system (3.18) and (3.19) is rewritten in the form

Hτ̂ = (f (H, H )(H − H )X̂ + g(H, H )H3X̂)X̂, (6.1)
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where

f (H, H ) = − 1

H − H
and

g(H, H ) = −(H − H )3.

The right-hand side of (6.1) is then discretized using a modified conservative finite
difference scheme on a uniform grid (A. A. Golovin & D. L. Chopp, personal com-
munication 2005)

−
(
fi+1/2

(
Hn

i+1 − Hn
i

)
− fi−1/2

(
Hn

i − Hn
i−1

)) 1


x2

+
(
fi+1/2

(
H

n

i+1 − H
n

i

)
− fi−1/2

(
H

n

i − H
n

i−1

)) 1


x2

−
(
gi+1/2

(
Hn

i+2 − 3Hn
i+1 + 3Hn

i − Hn
i−1

)) 1


x4

+
(
gi−1/2

(
Hn

i+1 − 3Hn
i + 3Hn

i−1 − Hn
i−2

)) 1


x4
, (6.2)

where

fi±1/2 =
fi + fi±1

2
(6.3)

and

gi±1/2 =
gi + gi±1

2
. (6.4)

Periodic boundary conditions are applied at the left and right endpoints of the
spatial grid. The equations are updated in time using a backward difference scheme
with a quasi-constant step size that is provided by the MATLAB function ODE15S
(Shampine & Reichelt 1997). The scheme is stable and conserves mass for all initial
conditions and mesh sizes considered.

The numerical results for the evolution to rupture of a MG interface and a flat CM
interface, under isothermal conditions, can be compared to previous research. Under
isothermal conditions, only destabilizing attractive van der Waals forces compete
with the stabilizing capillary effects. The evolution of the MG interface will result
in film rupture if the initial perturbation is selected to correspond to an unstable
wavenumber from linear stability theory, i.e. 0 <ω < 1. Figure 8 shows the MG
interface morphology as the initial perturbation grows and approaches rupture. The
wavenumber that corresponds to the maximum real growth rate was selected and the
initial perturbation amplitude is 0.1.

Time to rupture τ̂R is plotted as a function of the number of spatial nodes in
figure 9. Our results show that τ̂R converges to 4.08, a value that compares reasonably
well with previous results. (Burelbach et al. 1988) used central finite differences in
space and the midpoint (Crank–Nicholson) rule in time, and solved the difference
equations using Newton–Raphson iteration. They report a rupture time of τ̂R = 4.16
with N = 40 spatial nodes. Williams & Davis (1982) employed a finite difference
midpoint method and report τ̂R = 5.7 with N = 16.

As the film nears rupture, the curvature of the tip becomes very large. Figure 10 is
a plot of the position H and inverse curvature 1/K = 1/HX̂X̂ of the tip, along with
the grid spacing 
x (horizontal dashed line) for reference. As the inverse curvature
diminishes to the same order of magnitude as the uniform grid spacing 
x, the grid
is no longer fine enough to resolve the tip. Thus, numerical accuracy suffers at times
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Figure 8. Isothermal rupture of film with flat CM interface for a sequence of times. Curve A
is the initial perturbation with amplitude 0.1 at τ̂ = 0. Curve B is at τ̂ = 1.45, C is at τ̂ = 3.77
and D is at rupture τ̂R =4.08. 800 spatial nodes were used to discretize the interface.
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Figure 9. Comparison of rupture time τ̂R as a function of number of spatial nodes for the
same initial perturbation amplitude. τ̂R has converged to 4.08 by approximately N = 100. The
‘+’ and ‘�’ symbols give the rupture times predicted in Williams & Davis (1982) and Burelbach
et al. (1988), respectively.

greater than τ̂L, where τ̂R − τ̂L =4 × 10−5 for N = 400 nodes. This is a very small
fraction of τ̂R , and resolution improves on finer grids. On the other hand, the work of
Zhang & Lister (1999) shows how, for solutions to a class of thin film differential
equations (that includes our isothermal case), an initial sinusoidal perturbation evolves
into a similarity solution. Their conclusion is that the lubrication approximation
is valid up to within a molecular length of separation between interfaces. Our
calculations also show the rupture surface converging to similarity solutions, in both
isothermal and non-isothermal cases. Therefore, our model is limited by numerical
accuracy, not the breakdown of the lubrication approximation.
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Figure 10. Position H and inverse curvature 1/HX̂X̂ of the tip as the film approaches rupture.
The grid spacing 
x corresponds to the horizontal dashed line, and is no longer fine enough
to resolve the tip when it is on the order of 1/HX̂X̂ . Here this occurs at a time very close to
rupture τ̂L = 4.0844 (τ̂R = 4.08447).

7. Nonlinear evolution with variable temperature
Numerical methods are applied to explore oscillatory and non-oscillatory evolution

up to rupture. Both the MG and CM interfaces were discretized with 800 spatial
nodes in the series of figures 11 to 14.

7.1. Non-oscillatory interface evolution

Numerical investigation of the fully nonlinear evolution shows how a phase shift in the
initial condition has a significant effect on the long-term evolution of the system. The
fully nonlinear system is evaluated for initial perturbations taken from region II within
the marginal stability curve (figure 5), at Θ∞ =0.0156 and wavenumber ω = 0.582.
Three different initial configurations of CM and MG interfaces are considered,
corresponding to phase shifts of 0 (sinuous mode), π (pinch mode) and π/2 (symmetry-
breaking mode). The amplitudes of the initial perturbations of the interfaces are
chosen to be the eigenvectors given by the linear theory.

The greatest minimum separation between surfaces occurs when the initial
perturbations are in phase. This initial condition requires the longest time to rupture,
τ̂R = 23.5. Evolution of the two surfaces at several times is shown in figure 11. The
CM interface retreats from the approaching MG surface tip by melting back into
the crystal region. As discussed in the previous section, there is sufficient latent heat
being transferred quasi-statically to the CM surface near the rupture tip to drive local
melting.

The initial surface configuration having the narrowest separation is the pinch mode,
and time to rupture is shorter, τ̂R =13.7, than other configurations. Figure 12 again
shows the crystal–melt interface retreating from the rupture tip region by melting.

The initial surfaces have an intermediate minimum separation for a phase shift of
π/2, and an intermediate rupture time τ̂R = 16.5. As in the pinch and sinuous modes,
figure 13 shows the CM interface again retreating into the crystal away from the
rupture tip.
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Figure 11. Evolution of sinuous or in-phase mode. According to linear theory, the initial
perturbation condition of the two surfaces is in the stationary regime (B = 0.054, ω =0.582,
σ = 0.1154). A rising temperature gradient in the region near the advancing tip drives melt-back
of the crystal surface. The curves for the MG interface are labelled A–D, at times τ̂ = 0, τ̂ = 17.9,
τ̂ = 22.8 and τ̂ = 23.5, respectively. Curves for the CM interface are labelled E–G, at times
τ̂ = 0, τ̂ = 20.7 and τ̂ = 23.5, respectively. The tip accelerates as it approaches the approximate
rupture time of τ̂R =23.5.
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Figure 12. Evolution of pinch mode with the same initial conditions as figure 11, except
that the CM interface is now π radians out of phase. According to linear theory, the initial
perturbation condition of the two surfaces is in the stationary regime. The curves for the MG
interface are labelled A–D, at times τ̂ =0, τ̂ = 11.2, τ̂ = 13.4 and τ̂ = 13.7, respectively. Curves
for the CM interface are labelled E–G, at times τ̂ = 0, τ̂ = 12.5 and τ̂ = 13.7, respectively. The
tip accelerates as it approaches rupture.

The temperature in the gas is maintained at a constant value. This results in a
temperature profile in the melt layer that increases very slightly from TM at the
crystal–melt interface and jumps up to T∞ just outside the melt–gas surface. Figure 14
is a contour plot of the scaled temperature field at a time near rupture. The rupture
tip region has sliced through the isotherms.
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Figure 13. Evolution of mode with a π/2 phase shift, with otherwise the same initial conditions
as figure 11. Symmetry is broken by the phase shift of the CM interface. The curves for the MG
interface are labelled A–D, at times τ̂ = 0, τ̂ = 9.3, τ̂ =14.7 and τ̂ = 16.5, respectively. Curves
for the CM interface are labelled E–G, at times τ̂ =0, τ̂ = 12.9 and τ̂ = 16.5, respectively.
Again, the tip accelerates as it approaches the approximate rupture time of τ̂R = 16.5.
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Figure 14. Temperature field at a time near rupture. Scaled temperature decreases as the
grey scale darkens.

7.2. Nonlinear oscillatory interface evolution

Initial conditions from regions III and IV of the stability diagram (figure 5) result in
oscillatory behaviour. For an initially symmetric configuration, the rupture occurs by
growth of a standing wave. Such oscillatory dynamics are illustrated in figure 15, in
which midpoints of both MG and CM surfaces are plotted as a function of scaled
time. The system is started in the pinch mode with an initial amplitude of A= 0.01 on
the melt–gas interface and rupture occurs at τ̂ ≈ 63. As the system evolves, a phase
shift develops in which oscillation of the CM interface lags behind the MG interface.
This indicates a difference in the dynamic time scale of the melting/freezing process
at the CM interface as compared to the dynamics of the MG interface.
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and the film eventually ruptures once a critical separation between H and H has been reached.
The solid line is the MG interface H , the dashed line is the CM interface H , and the dotted
line is the difference H − H .
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Figure 16. Rupture time varies as B increases. Amplitude of the initial perturbation is 0.1 for
the ‘*’ curve, and 0.01 for the ‘+’ curve. BC is the critical value of the parameter B denoting
the onset of instability. The steps are a result of a change in the number of oscillation periods
before rupturing, as shown in the phase plane plots in figure 17. The letters A–D correspond
to the points selected for the phase plane plots.

Figure 16 provides a summary of the effect of oscillatory behaviour on rupture
dynamics as B is increased from zero to the critical temperature BC , which is at the
peak of the marginal stability curve. The wavenumber at the maximum of the (B , ω)
marginal stability surface is used in all calculations, as this is the maximum growth
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Figure 17. Series of phase plane plots of H versus H . The solid curves give the surface
midpoint locations and the light curves are the surface endpoint locations. The dashed line
gives the positions where H =H . Plots (a)–(d) correspond to points A–D in figure 16.
(a) corresponds to stationary rupture, in which the solid curve reaches the H =H line. (b) is
the second half-integer oscillatory rupture. (c) and (d) show increasing numbers of oscillations
before rupture, as the thermal parameter approaches the marginal stability criteria.

rate for all B . According to linear theory, τ̂R should go to infinity as B approaches
BC . The curve described by the ‘+’ symbols in figure 16 corresponds to a small,
A = 0.01, initial perturbation amplitude and does tend towards an infinite τ̂R at BC , in
agreement with the limit imposed by linear theory. Larger initial perturbations given
by the ‘*’ symbols, however, are unstable for values of B greater than BC , a nonlinear
finite amplitude effect. The step-like features exhibited in both curves as B increases
correspond to increases in half-integer number of oscillation periods before rupture.
Figure 17 presents a series of phase plane plots of H versus H at the four values of
B indicated in figure 16. The phase plane plots are all taken from identical initial
shape configurations and show how oscillations affect time to rupture. At A there is
no oscillation, at B there is the second one-half oscillation before rupture, and C and
D show the cases for many oscillations.

Additional insight is gained by examining the temperature gradient which is shown
in figure 18 as a sequence of snapshots of a film and the thermal gradient within, on
the way to rupture via the growth of a standing wave. The light areas correspond
to the location of maximum temperature gradient and it is seen that the maximum
temperature gradient is always aligned with the narrowest region of the film, since heat
flow is quasi-static. This figure supports a mechanism of stabilization and oscillation
of the film by means of a thermal field directly opposing the destabilizing van der
Waals attractive forces.

8. Conclusions
A novel, governing pair of nonlinear equations is derived for the crystal–melt

and melt–gas interfaces bounding a melt film, by utilizing lubrication theory and
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Figure 18. Temperature gradient sequence with subplots (a)–(f ) corresponding to scaled
times τ̂ =0, 9.78, 14.61, 23.41, 24.51 and 29.67, respectively. Note that the temperature gradient
scale-bar range increases as the separation between the surfaces decreases. Additionally, the
maximum gradient always occurs at the location of minimum separation. The MG and CM
interfaces were discretized with 800 spatial nodes.

long-wave dynamics. Linear stability analysis of the thin film reveals that, when
an applied thermal field and a crystal–melt interface evolving by freezing/melting
is coupled with the van der Waals forces and melt–gas interface capillary effects,
oscillatory instability at all marginally stable conditions is observed (i.e. wherever σr

vanishes). Key practical findings of this work are that an increase in the temperature
gradient in a transverse direction across the thin film stabilizes the thin film and,
as the magnitude of the temperature gradient across a stable film is decreased, one
would observe the onset of instability as a disturbance having a particular wavelength.
Eigenfunctions of the linear theory show a transition of the thermal field from in-phase
to out-of-phase alignment with respect to the gas–melt interface as the temperature
gradient is increased, leading to oscillatory behaviour.

Numerical analysis of the fully nonlinear pair of governing equations shows that,
for stationary instabilities, as the upper MG interface nears the rupture point at the
lower CM interface, the lower interface retreats by melting back. Since the film is very
narrow, thermal diffusion is unidirectional and quasi-static. Therefore, near the rupture
tip, both the van der Waals forces and the heat flux are largest, and so as the rupture
tip is approaching the crystal–melt interface, a larger amount of heat is being fed to
the CM interface in this region compared to adjacent regions. This heat is consumed
at the crystal–melt interface as latent heat, promoting local melting. Small (linear)
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symmetric perturbations are shown to grow to rupture as standing waves, and with
increasing number of oscillations, the closer the initial configuration is to the marginal
stability condition. For larger initial shape perturbations, the region on a plot of the

thermal parameter B = C
−1

Bi2Θ∞/(3
ˆ̂
LÃ2(1 + Bi)2) (a measure of the magnitude of

the positive temperature gradient across the melt) versus the wavenumber ω, within
which perturbations can grow to rupture, increases, whereas the time to rupture
decreases.

Discussions with S. H. Davis, A. A. Golovin, L. Fisher and S. Roper are appreciated.

REFERENCES

Ajaev, V. S. & Willis, D. A. 2006 Heat transfer, phase change, and thermocapillary flow in films
of molten metal on a substrate. Numer. Heat Transfer A 50, 301–313.

Anson, J. P., Drew, R. A. L. & Gruzleski, J. E. 1999 The surface tension of molten aluminum
and Ag-Si-Mg alloy under vacuum and hydrogen atmospheres. Metall. Mater. Trans. B 30,
1027–1032.

Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W. & Wadley, H. N. G.

2000 Metal Foams: A Design Guide. Butterworth–Heinemann.

Bandyopadhyay, D., Gulabani R. & Sharma A. 2005 Instability and dynamics of thin liquid
bilayers. Indust. Engng Chem. Res. 44, 1259–1272.

Banhart, J. 2001 Manufacture, characterization and application of cellular metals and metal foams.
Prog. Mater. Sci. 46, 559–632.

Burelbach, J., Bankoff, S. & Davis, S. 1988 Nonlinear stability of evaporating/condensing liquid
films. J. Fluid Mech. 195, 463–494.

Chernov, A. A. & Temkin, D. E. 1976 Capture of inclusions in crystal growth. In Current Topics
in Materials Science, Vol. 2 (ed. E. Kaldis), pp. 3–77. North-Holland.

Dash, J., Fu, H. & Wettlaufer, J. 1995 The premelting of ice and its environmental consequences.
Rep. Prog. Phys. 58, 115–167.

Davis, S. H. 2000 Interfacial fluid dynamics. In Perspectives in Fluid Dynamics (ed. G. K. Batchelor,
H. K. Moffatt & M. G. Worster), pp. 1–49. Cambridge University Press.

Dinsdale, A. T. & Quested, P. N. 1999 The viscosity of aluminium and its alloys: A review of data
and models. J. Materials Sci. 39, 7221–7228.

Erneaux, T. & Davis, S. H. 1992 Nonlinear rupture of free films. Phys. Fluids 5, 1117–1122.

Fisher, L. S. & Golovin, A. A. 2005 Nonlinear stability analysis of a two layer thin liquid film:
Dewetting and autophobic behavior. J. Colloid Interface Sci. 291, 515–528.

Frenken, J. W .M. & van der Veen, J. F. 1985 Observation of surface melting. Phys. Rev. Lett. 54,
134–137.

Hur, B. Y., Park, S. H. & Hiroshi, A. 1989 Viscosity and surface tension of Al and effects of
additional element. In Eco-Materials Processing and Design, Mater. Sci. Forum 439, 51–56.

Israelachvili, J. N. 1991 Intermolecular and Surface Forces. Academic.

Kao, J. C.-T., Golovin, A. A. & Davis, S. H. 2006 Rupture of thin films with resonant substrate
patterning. J. Colloid Interface Sci. 303, 532–545.

Oron, A., Davis, S. & Bankoff S. 1997 Long scale evolution of thin liquid films. Rev. Mod. Phys.
69, 931–980.

Pluis, B., van der Gon, A. D., Frenken, J. & van der Veen, J. 1987 Crystal-face-dependence of
surface melting. Phys. Rev. Lett. 59, 2678–2681.

Pluis, B., Taylor, T .N., Frenkel, D. & van der Veen, J. F. 1989 Role of long range interactions
in the melting of a metallic surface. Phys. Rev. B 40, 1353–1356.

Ruckenstein, E. & Jain R. 1974 Spontaneous rupture of thin liquid films. Chem. Soc. Faraday
Trans. 70, 132–147.

Shampine, L. F. & Reichelt, M. W. 1997 The MATLAB ode suite. SIAM J. Sci. Comput. 18, 1–22.

Sheludko, A. 1967 Thin liquid films. Adv. Colloid Interface Sci. 1, 391–463.

Tartaglino, U., Zykova-Timan, T., Ercolesi, F. & Tosatti, E. 2005 Melting and non-melting of
solid surfaces and nanosystems. Phys. Rep. 411, 291–321.



448 M. Beerman and L. N. Brush

VanHook, S. J., Schatz, M. F., McCormick, W. D., Swift, J. B. & Swinney, H. L. 1995 Long-
wavelength instability in surface-tension driven Bénard convection. Phys. Rev. Lett. 75, 4397–
4400.

Weaire, D. & Hutzler, S. 1999 The Physics of Foam. Oxford University Press.

Wettlaufer, J. S. & Worster, M. G. 2006 Premelting dynamics. Annu. Rev. Fluid Mech. 38, 427–452.

Wettlaufer, J., Worster, M. G., Wilen, L. A. & Dash, J. G. 1996 A theory of premelting dynamics
for all power law forces. Phys. Rev. Lett. 76, 3602–3605.

Wettlaufer, J., Worster, M. G. & Wilen, L. 1997 Premelting dynamics: Geometry and interactions.
J. Phys. Chem. B 101, 6137–6141.

Wheeler, A .A. 1993 Handbook of Crystal Growth, Vol. 1. Elsevier.

Wilen, L. A, Wettlaufer, J. S., Elbaum, M. & Schick, M. 1995 Dispersion-force effects in inter-
facial premelting of ice. Phys. Rev. B 52, 12426–12433.

Williams, M. & Davis, S. H. 1982 Nonlinear theory of film rupture. J. Colloids Interface Sci. 90,
220–228.

Wu, Q. & Wong, H. 2004 A slope-dependent disjoining pressure for non-zero contact angles.
J. Fluid Mech. 506, 157–185.

Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for the van der Waals rupture of a thin
film on a solid substrate. Phys. Fluids 11, 2454–2462.


